

Freifunk DNSSEC & sig0namectl

Gentle Introduction

● DNS – how it works

● DNSSEC – what is it good for?

● Freifunk DNSSEC deployment – the story so far

sig0namectl

● Dynamic DNS with SIG(0) keypairs

● Wide Area DNS-SD

● Example demo

Future Plans & Open Discussion

DNS: talkin’ bout a resolution ...
DNS Server deployment types:

● recursive caching resolver servers
(usually local, sometimes public, eg Google)

● authoritative zone servers
(usually global)

DNS requests are usually of type query, but also update

● request resolution (query or update)

● get answer (result)

DNS servers respond to query & update requests for
resource record types, e.g. A records for IPv4, AAAA
records for IPv6 & MX records for mail server address
resolution. There is much, much more. nsupdate -T
gives the full list of DNS resource record types.

from https://techreader.com/files/2016/12/how-the-dns-system-works.png

DNSSEC: DNS Anchored Chain of Trust
● DNSSEC introduces a

cryptographic chain of trust with
the DNS root key as the trust
anchor.

● The DNS root key is securely
updated in an open
key signing ceremony.

● DNSSEC offers cryptographic
proof of integrity for data returned
by DNSSEC enabled servers.

from https://www.nic.ch/export/shared/.content/images/dnssec_chain_en.png

https://www.cloudflare.com/en-gb/dns/dnssec/root-signing-ceremony/

DNSSEC: Freifunk deployment
The story so far ...

● Freifunk DNS admin Werner recently retired so
plans were made to migrate the primary DNS
server and hand over admin to nosy.

● Migration is done, lets hear from nosy ...

sig0namectl: to name is to own
sig0namectl is a project designed to allow
community networks to directly & securely
publish and update their own information and
services into the community's DNS system.

The project contains utilities to ease publishing
and updating workflows that can be run on
personal laptops, Freifunk routers and even in
web browsers.

It leverages DNSSEC, SIG(0) DNS keys, wide
area DNS Service Discovery and much more to
allow participants to update all their public
resource records in a reliable, scalable and open
standards-based method.

MYCOsystem by Małgorzata Gurowska from https://culture.pl/en/artist/malgorzata-gurowska
(permission pending from artist to use as sig0namectl logo)

https://culture.pl/en/artist/malgorzata-gurowska

sig0namectl: Project Motivations
Autonomy

● minimise external dependencies.

● minimise extractive proprietary external APIs

● offers an initial trust root through which others can grow.

Sustainability

● minimal deployment footprint
(DNS is already around us & flows like water)

● scale use as you need and your community grows

Freedom

● opportunity for local & community network to offer services

● alternatives to using centralised data centre infrastructures

● remove unnecessary extractive 3rd party services

SIG(0) DNS KEY Authentication
The first step in using sig0namectl is to generate a
named SIG(0) keypair and to request registration
under a compatible domain.

SIG(0) is a modern standard authentication
standard that uses a public and private key pair to
authenticate and sign DNS update requests.

The public key is published as a DNS KEY resource
record.

The private key should kept secure in the owner’s
local host that generated the key pair.

$ dig +noall +answer +multiline vortex.zenr.io KEY
vortex.zenr.io. 600 IN KEY 512 3 15 (
 2MK3KZkUgYQVumU9bhy1KzIZ2FhFQZ8yLP2nFMJRCEQ=
); alg = ED25519 ; key id = 56161

Using dig to get further information about public KEY resource records

New KEY Generation & Request (client)
Using the sig0zonectl tool request_key tool, a client
generates a KEY pair locally with a unique label (zembla)
beneath an existing compatible domain (beta.freifunk.net).
The tool then sends a DNS update request to the primary
DNS server responsible for the domain to add the public
key resource record to the domain.

The DNS server may grant or ignore this request.

The registration request is published as a DNS KEY
resource record in a holding name space for review. The
default DNS server automatic policy is to accept new
unique name requests on a “first-come, first served” basis,
to accept if the fully qualified domain name (FQDN) is
unused.

If successful, the new KEY is published and the default
policy applied is that the keypair can be used to update
records at and below the KEY’s keyname FQDN.

$ dig +noall +answer zembla.beta.freifunk.net KEY
zembla.beta.freifunk.net. 54 IN KEY 512 3 15 (
 dc2/whMCewe4NAUqNdBURBHEa4ykDPSgguYIUqhqOcA=
); alg = ED25519 ; key id = 37757

Using dig to get further information about the successfully registered KEY
zembla.beta.freifunk.net

$./request_key zembla.beta.freifunk.net
Generating key pair.
Kzembla.beta.freifunk.net.+015+37757
New SIG0 keypair for zembla.beta.freifunk.net generated in
./keystore
KEY request 'zembla._signal.beta.freifunk.net IN KEY 512
3 15 dc2/whMCewe4NAUqNdBURBHEa4ykDPSgguYIUqhqOcA=' added
$

Using the sig0zonectl tool request_key to generate a new KEY resource record for
zembla.beta.freifunk.net

KEY Request Acceptance (DNS Admin)
With access to the zenr.io private KEY, the zone
admin can use or automate the process_requests
tool to grant KEY requests given by clients using
request_key on a “first come, first served” (FCFS)
policy basis.

The default action is that if the KEY FQDN has no
current resource records at all, then it is replicated
to the upstream domain and SIG(0) update access
is granted for the KEY FQDN and all subdomains.

If any DNS resource record already exists, then the
addition request made for publishing the KEY is
denied. Other policies can be configured.

$./process_requests zembla.beta.freifunk.net

LIST of KEY REQUESTS
_signal.zenr.io. PTR zembla._signal.beta.freifunk.net.

PROCESSING KEY REQUESTS
KEY 'zembla.beta.freifunk.net' added under zone
'beta.freifunk.net' with '[key id = 23799]', IDN
'zembla.zenr.io'.

Using process_requests to register a new unused KEY with FQDN zembla.zenr.io

$ ZONE="zenr.io" ./process_requests

LIST of KEY REQUESTS
_signal.zenr.io. PTR vortex._signal.zenr.io.

PROCESSING KEY REQUESTS
KEY 'zembla.beta.freifunk.net' IS NOT added under zone
'beta.freifunk.net', as DNS resource records already
exist.

Using process_requests a second time denies the request as a resource record already exists

sig0namectl Workflow: dynamic IP
dyn_ip: The simplest sig0namectl tool is the usual form of
dynamic IP address management featuring:

● Assignment of multiple IPv4 and IPv6 addresses

● Assign IP addresses for any FQDN below the keyname
(example keyname given is zembla.beta.freifunk.net)

$ dig +noall +answer zembla.beta.freifunk.net KEY
zembla.beta.freifunk.net. 54 IN KEY 512 3 15 (
 dc2/whMCewe4NAUqNdBURBHEa4ykDPSgguYIUqhqOcA=
); alg = ED25519 ; key id = 37757

Using dig to get further information about the successfully registered KEY
zembla.beta.freifunk.net

$./dyn_ip zembla.beta.freifunk.net 10.31.40.7
zembla.beta.freifunk.net. 60 IN A 10.31.40.7
zembla.beta.freifunk.net. 60 IN RRSIG A 13 4 60
20240509193324 20240429145552 60365 beta.freifunk.net.
xIJrbvrRfDLM2zcGMnu8lI+MudP75/E8l/ddL/pthU+LcY4rnLQpTVdE
lBX+WuY7hJNNQG9Zfik2m032XOqlEA==
$

Using the sig0zonectl tool request_key to generate a new KEY resource record for
zembla.beta.freifunk.net

WA DNS-SD (Wide Area Service Discovery)
DNS-SD provides for 3 core functions within a DNS
domain that include the use of further DNS PTR,
TXT & SRV resource records for:

● service registration (service offering)

● service enumeration (service & type browsing)

● service use (service resolving/lookup)

DNS-SD offers these functions over two core
transport mechanisms for two distinct scopes:

● multicast DNS for local broadcast domains
(for .local addresses)

● regular unicast DNS for global domains
(Wide Area DNS-SD domains)

Service Browsing example for print services
from https://www.researchgate.net/publication/279177017_Internet_of_Things_A_Survey_on_Enabling_Technologies_Protocols_and_Applications

$ORIGIN _dns-sd._udp.zembla.beta.freifunk.net.
b PTR zembla.beta.freifunk.net.
db PTR zembla.beta.freifunk.net.
dr PTR zembla.beta.freifunk.net.
lb PTR zembla.beta.freifunk.net.
r PTR zembla.beta.freifunk.net.
_services PTR _printer._tcp.zembla.beta.freifunk.net.
_services PTR _http._tcp.zembla.beta.freifunk.net.
$ORIGIN _printer._tcp.domain.

PTR Printer1.zembla.beta.freifunk.net.
PTR Printer2.zembla.beta.freifunk.net.

Workflow: DNS-SD Domains
dnssd_domain offers configuration of DNS-SD
PTR records to allow browsing & registration of
services within a domain.

For any particular domain, DNSSD-aware aware
software query these PTR resource records
underneath _dns-sd._udp to determine the
domains to query for service browsing and service
registration.

$./dnssd-domain zembla.beta.freifunk.net
$

Using the sig0zonectl tool dnssd-domain to establish DNS-SD browsing & registration
PTR resource records for a domaon

$ORIGIN _dns-sd._udp.zembla.beta.freifunk.net.
b PTR zembla.beta.freifunk.net.
lb PTR zembla.beta.freifunk.net.
db PTR zembla.beta.freifunk.net.
r PTR zembla.beta.freifunk.net.
dr PTR zembla.beta.freifunk.net.
$

Listing of zone PTR updates under zembla.zenr.io after above command

Workflow: DNS-SD service types
dnssd-service offers configuration of sets of
service types (PTR records) and service instance
sets (SRV & TXT records).

It works with Linux, macOS & Win DNS-SD tools.

The service type PTR records allows each service
type to be listed & used on demand. dnssd-
service allows further DNS resource record types
such as PTR, SRV and TXT resource records
underneath the service type subdomain (eg
_http._tcp)to determine sufficient information
to access the resource, including IP address &
port, together with any service specific details. See
dns-sd.org for more examples.

$ DNSSD_SERVICES="_http._tcp" \
./dnssd-service zembla.beta.freifunk.net
$

The sig0zonectl dnssd-service script gives examples of how to register DNS-SD service types
and instances for browsing & enumeration within a domain

$ avahi-browse -tr _http._tcp -d zembla.beta.freifunk.net
+ n/a n/a zembla _http._tcp zembla.beta.freifunk.net
= n/a n/a zembla _http._tcp zembla.beta.freifunk.net
 hostname = [zembla.beta.freifunk.net]
 address = [2a01:4f8:c17:3dd5:8000::10]
 port = [80]
 txt = ["page=/about"]

The dig or avahi-browse tools can be used to enumerate details
of services of the service type _http._tcp – which act like shared bookmarks

$ avahi-browse -brat -d zembla.beta.freifunk.net
...

The dig or avahi-browse Linux tools can be used to enumerate details of all service types and
instances registered within a domain (long output not shown)

Demo 1: group map update
dyn_loc is a tool allows the management of DNS
LOC records under a KEY’s FQDN. LOC records
specify GPS locations. It currently supports real
time position updates with supported platform
tools: termux under Android & gpsd under Linux.

demo/map.html is a demo browser web app
showing dynamic map of DNS-SD service type of
location markers (_loc._udp).

This example shows a curated list created under
zembla.zenr.io where each position marker
is under control of their own LOC record under
their own managed FQDN.

Listing of zone PTR updates under zembla.zenr.io after above command

Further Work ...
Further work in progress:

● DNSSD web browser & management tool

● DNSSD wireguard services
– offers, request and configuration provisioning

for public IPv4/IPv6 allocation for local hosted
services – decentralised Freifunk hosted
services just for Freifunk or to the whole
Internet

● Consider further workflows with:
– DANE, OPENPGP, SSHFP, TLSA

● Others?
– Get Involved: we welcome pilot devs & users!
– Your feedback & ideas welcome any time …..

		2024-05-03T07:16:59+0200

